3.856 \(\int \frac {(f+g x) \sqrt {a+b x+c x^2}}{d+e x} \, dx\)

Optimal. Leaf size=219 \[ -\frac {\tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right ) \left (-4 c e (a e g-b d g+b e f)+b^2 e^2 g+8 c^2 d (e f-d g)\right )}{8 c^{3/2} e^3}+\frac {(e f-d g) \sqrt {a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac {-2 a e+x (2 c d-b e)+b d}{2 \sqrt {a+b x+c x^2} \sqrt {a e^2-b d e+c d^2}}\right )}{e^3}+\frac {\sqrt {a+b x+c x^2} (b e g-4 c d g+4 c e f+2 c e g x)}{4 c e^2} \]

[Out]

-1/8*(b^2*e^2*g+8*c^2*d*(-d*g+e*f)-4*c*e*(a*e*g-b*d*g+b*e*f))*arctanh(1/2*(2*c*x+b)/c^(1/2)/(c*x^2+b*x+a)^(1/2
))/c^(3/2)/e^3+(-d*g+e*f)*arctanh(1/2*(b*d-2*a*e+(-b*e+2*c*d)*x)/(a*e^2-b*d*e+c*d^2)^(1/2)/(c*x^2+b*x+a)^(1/2)
)*(a*e^2-b*d*e+c*d^2)^(1/2)/e^3+1/4*(2*c*e*g*x+b*e*g-4*c*d*g+4*c*e*f)*(c*x^2+b*x+a)^(1/2)/c/e^2

________________________________________________________________________________________

Rubi [A]  time = 0.32, antiderivative size = 219, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {814, 843, 621, 206, 724} \[ -\frac {\tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right ) \left (-4 c e (a e g-b d g+b e f)+b^2 e^2 g+8 c^2 d (e f-d g)\right )}{8 c^{3/2} e^3}+\frac {(e f-d g) \sqrt {a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac {-2 a e+x (2 c d-b e)+b d}{2 \sqrt {a+b x+c x^2} \sqrt {a e^2-b d e+c d^2}}\right )}{e^3}+\frac {\sqrt {a+b x+c x^2} (b e g-4 c d g+4 c e f+2 c e g x)}{4 c e^2} \]

Antiderivative was successfully verified.

[In]

Int[((f + g*x)*Sqrt[a + b*x + c*x^2])/(d + e*x),x]

[Out]

((4*c*e*f - 4*c*d*g + b*e*g + 2*c*e*g*x)*Sqrt[a + b*x + c*x^2])/(4*c*e^2) - ((b^2*e^2*g + 8*c^2*d*(e*f - d*g)
- 4*c*e*(b*e*f - b*d*g + a*e*g))*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(8*c^(3/2)*e^3) + (Sq
rt[c*d^2 - b*d*e + a*e^2]*(e*f - d*g)*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*S
qrt[a + b*x + c*x^2])])/e^3

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 814

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*(a + b*x + c*x^
2)^p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), x] - Dist[p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a
 + b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2*a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p -
 c*d - 2*c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c^2*d^2*(1 + 2*p) - c*e*(b*
d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0
] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])
) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {(f+g x) \sqrt {a+b x+c x^2}}{d+e x} \, dx &=\frac {(4 c e f-4 c d g+b e g+2 c e g x) \sqrt {a+b x+c x^2}}{4 c e^2}-\frac {\int \frac {\frac {1}{2} (4 c e (b d-2 a e) f+4 a c d e g-b d (4 c d-b e) g)+\frac {1}{2} \left (b^2 e^2 g+8 c^2 d (e f-d g)-4 c e (b e f-b d g+a e g)\right ) x}{(d+e x) \sqrt {a+b x+c x^2}} \, dx}{4 c e^2}\\ &=\frac {(4 c e f-4 c d g+b e g+2 c e g x) \sqrt {a+b x+c x^2}}{4 c e^2}+\frac {\left (\left (c d^2-b d e+a e^2\right ) (e f-d g)\right ) \int \frac {1}{(d+e x) \sqrt {a+b x+c x^2}} \, dx}{e^3}-\frac {\left (b^2 e^2 g+8 c^2 d (e f-d g)-4 c e (b e f-b d g+a e g)\right ) \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{8 c e^3}\\ &=\frac {(4 c e f-4 c d g+b e g+2 c e g x) \sqrt {a+b x+c x^2}}{4 c e^2}-\frac {\left (2 \left (c d^2-b d e+a e^2\right ) (e f-d g)\right ) \operatorname {Subst}\left (\int \frac {1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac {-b d+2 a e-(2 c d-b e) x}{\sqrt {a+b x+c x^2}}\right )}{e^3}-\frac {\left (b^2 e^2 g+8 c^2 d (e f-d g)-4 c e (b e f-b d g+a e g)\right ) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{4 c e^3}\\ &=\frac {(4 c e f-4 c d g+b e g+2 c e g x) \sqrt {a+b x+c x^2}}{4 c e^2}-\frac {\left (b^2 e^2 g+8 c^2 d (e f-d g)-4 c e (b e f-b d g+a e g)\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 c^{3/2} e^3}+\frac {\sqrt {c d^2-b d e+a e^2} (e f-d g) \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{e^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.35, size = 216, normalized size = 0.99 \[ \frac {\tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+x (b+c x)}}\right ) \left (4 c e (a e g-b d g+b e f)-b^2 e^2 g+8 c^2 d (d g-e f)\right )+2 \sqrt {c} \left (4 c (d g-e f) \sqrt {e (a e-b d)+c d^2} \tanh ^{-1}\left (\frac {2 a e-b d+b e x-2 c d x}{2 \sqrt {a+x (b+c x)} \sqrt {e (a e-b d)+c d^2}}\right )+e \sqrt {a+x (b+c x)} (b e g+2 c (-2 d g+2 e f+e g x))\right )}{8 c^{3/2} e^3} \]

Antiderivative was successfully verified.

[In]

Integrate[((f + g*x)*Sqrt[a + b*x + c*x^2])/(d + e*x),x]

[Out]

((-(b^2*e^2*g) + 8*c^2*d*(-(e*f) + d*g) + 4*c*e*(b*e*f - b*d*g + a*e*g))*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a
 + x*(b + c*x)])] + 2*Sqrt[c]*(e*Sqrt[a + x*(b + c*x)]*(b*e*g + 2*c*(2*e*f - 2*d*g + e*g*x)) + 4*c*Sqrt[c*d^2
+ e*(-(b*d) + a*e)]*(-(e*f) + d*g)*ArcTanh[(-(b*d) + 2*a*e - 2*c*d*x + b*e*x)/(2*Sqrt[c*d^2 + e*(-(b*d) + a*e)
]*Sqrt[a + x*(b + c*x)])]))/(8*c^(3/2)*e^3)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(c*x^2+b*x+a)^(1/2)/(e*x+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(c*x^2+b*x+a)^(1/2)/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Erro
r: Bad Argument Type

________________________________________________________________________________________

maple [B]  time = 0.01, size = 1559, normalized size = 7.12 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)*(c*x^2+b*x+a)^(1/2)/(e*x+d),x)

[Out]

1/2/e*g*(c*x^2+b*x+a)^(1/2)*x+1/4/e*g/c*(c*x^2+b*x+a)^(1/2)*b+1/2/e*g/c^(1/2)*ln((c*x+1/2*b)/c^(1/2)+(c*x^2+b*
x+a)^(1/2))*a-1/8/e*g/c^(3/2)*ln((c*x+1/2*b)/c^(1/2)+(c*x^2+b*x+a)^(1/2))*b^2-1/e^2*((x+d/e)^2*c+(b*e-2*c*d)*(
x+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*d*g+1/e*((x+d/e)^2*c+(b*e-2*c*d)*(x+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1
/2)*f-1/2/e^2*ln(((x+d/e)*c+1/2*(b*e-2*c*d)/e)/c^(1/2)+((x+d/e)^2*c+(b*e-2*c*d)*(x+d/e)/e+(a*e^2-b*d*e+c*d^2)/
e^2)^(1/2))/c^(1/2)*b*d*g+1/2/e*ln(((x+d/e)*c+1/2*(b*e-2*c*d)/e)/c^(1/2)+((x+d/e)^2*c+(b*e-2*c*d)*(x+d/e)/e+(a
*e^2-b*d*e+c*d^2)/e^2)^(1/2))/c^(1/2)*b*f+1/e^3*ln(((x+d/e)*c+1/2*(b*e-2*c*d)/e)/c^(1/2)+((x+d/e)^2*c+(b*e-2*c
*d)*(x+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))*c^(1/2)*d^2*g-1/e^2*ln(((x+d/e)*c+1/2*(b*e-2*c*d)/e)/c^(1/2)+((x
+d/e)^2*c+(b*e-2*c*d)*(x+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))*c^(1/2)*d*f+1/e^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1
/2)*ln(((b*e-2*c*d)*(x+d/e)/e+2*(a*e^2-b*d*e+c*d^2)/e^2+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x+d/e)^2*c+(b*e-2*
c*d)*(x+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x+d/e))*a*d*g-1/e/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln(((b*e-2*c
*d)*(x+d/e)/e+2*(a*e^2-b*d*e+c*d^2)/e^2+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x+d/e)^2*c+(b*e-2*c*d)*(x+d/e)/e+(
a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x+d/e))*a*f-1/e^3/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln(((b*e-2*c*d)*(x+d/e)/e+2*
(a*e^2-b*d*e+c*d^2)/e^2+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x+d/e)^2*c+(b*e-2*c*d)*(x+d/e)/e+(a*e^2-b*d*e+c*d^
2)/e^2)^(1/2))/(x+d/e))*b*d^2*g+1/e^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln(((b*e-2*c*d)*(x+d/e)/e+2*(a*e^2-b*d*e
+c*d^2)/e^2+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x+d/e)^2*c+(b*e-2*c*d)*(x+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2
))/(x+d/e))*b*d*f+1/e^4/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln(((b*e-2*c*d)*(x+d/e)/e+2*(a*e^2-b*d*e+c*d^2)/e^2+2*
((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x+d/e)^2*c+(b*e-2*c*d)*(x+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x+d/e))*c*
d^3*g-1/e^3/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln(((b*e-2*c*d)*(x+d/e)/e+2*(a*e^2-b*d*e+c*d^2)/e^2+2*((a*e^2-b*d*
e+c*d^2)/e^2)^(1/2)*((x+d/e)^2*c+(b*e-2*c*d)*(x+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x+d/e))*c*d^2*f

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(c*x^2+b*x+a)^(1/2)/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b*e-2*c*d>0)', see `assume?` f
or more details)Is b*e-2*c*d zero or nonzero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (f+g\,x\right )\,\sqrt {c\,x^2+b\,x+a}}{d+e\,x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((f + g*x)*(a + b*x + c*x^2)^(1/2))/(d + e*x),x)

[Out]

int(((f + g*x)*(a + b*x + c*x^2)^(1/2))/(d + e*x), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (f + g x\right ) \sqrt {a + b x + c x^{2}}}{d + e x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(c*x**2+b*x+a)**(1/2)/(e*x+d),x)

[Out]

Integral((f + g*x)*sqrt(a + b*x + c*x**2)/(d + e*x), x)

________________________________________________________________________________________